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Abstract

In this paper, a risk parity strategy based on portfolio kurtosis as reference

measure is introduced. This strategy allocates the asset weights in a portfolio in

a manner that allows an homogeneous distribution of responsibility for portfolio

returns’ huge dispersion, since portfolio kurtosis puts more weight on extreme

outcomes than standard deviation does. Therefore, the goal of the strategy is

not the minimization of kurtosis, but rather its “fair diversification” among as-

sets. An original closed-form expression for portfolio kurtosis is devised to set

up the optimization problem for this type of risk parity strategy. The latter is

then compared with the one based on standard deviation by using data from

a global equity investment universe and implementing an out-of-sample analy-

sis. The kurtosis-based risk parity strategy has interesting portfolio effects, with

lights and shadows. It outperforms the traditional risk parity according to main

risk-adjusted performance measures. In terms of asset allocation solutions, it

provides extremely unbalanced and more erratic portfolio weights (albeit with-

out excluding any component) in comparison to those pertaining the traditional

risk parity strategy.
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1. Introduction

Portfolio construction, the process of allocating wealth among different asset

classes, has a long tradition in the academic literature since the seminal works

by [1, 2]. For over 60 years, the approach based on the Mean-Variance Optimi-

sation (MVO) has provided the solution to investors’ asset allocation problem

suggesting the portfolio that maximizes the expected return for a given volatil-

ity level or the portfolio that minimizes volatility for a given level of expected

return. Despite its elegance and rationality, it is widely acknowledged that

MVO suffers from several drawbacks when put into practice [3, 4, 5, 6]. The

prominent problems are its excessive concentration in a limited number of the

asset classes of the investment universe and the high sensitivity of the suggested

asset class exposures to small changes in the estimated input parameters, most

notably in expected returns. Alternative portfolio construction methodologies

have been proposed in order not to run into these pitfalls. A notable contribu-

tion in this sense comes from a class of approaches, called risk-based strategies

or, alternatively, µ-free strategies [7, 8], which do not require expected returns

estimates as inputs. Since the global financial crisis of 2008, a version of these

strategies, known as risk parity, has gained popularity [9]. The distinguishing

feature of portfolios based on risk-parity strategy is that of allocating wealth

among asset classes in such a way that each of them contributes to the portfo-

lio volatility to the same extent, so they are also called “equally weighted risk

contribution portfolios” (or ERC portfolios). The risk parity strategy is driven

by the powerful idea of risk diversification (instead of dollars /capital diversifi-

cation) emphasized by Qian first [10, 11] and reported as “true diversification”.

The notion of risk contribution defined by [12] forms the basis for the formal

development of the risk parity strategy.

This paper aims to expand the research on risk parity with a new version of

the strategy where volatility of the portfolio’s return is replaced by the portfolio
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kurtosis as reference measure. The existing literature has already dealt with

other risk measures as appropriate for risk parity, provided they are homoge-

neous of degree one. Precisely, interesting variations use measures of downside

risk such as semi-volatility, value at risk [13] and conditional value at risk [14, 15].

Unlike these studies, the central and exclusive place given to kurtosis implies

that this study is not looking for a “new metric” but instead it wants to focus

on a specific feature regarding the shape of the distribution of portfolio returns.

It is well known that kurtosis, depending on whether it is higher or lower than

3, indicates fatter (or thinner) tails and stronger (or weaker) “peakedness” of

the distribution when compared to the normal distribution. Therefore, as indi-

cator of distributional characteristic, kurtosis concentrates on the movement of

probability mass from the shoulders of the distribution towards its tails and cen-

ter. A kurtosis-based risk parity strategy, relying on fourth portfolio moment,

puts more weight on extreme values/outcomes (either positive or negative) than

standard deviation does. Therefore, when investors set up a portfolio by dis-

seminating the responsibility for portfolio kurtosis equally among asset classes,

they still focus on dispersion, but the huge dispersion. So, this work brings a

novelty while remaining adherent to a symmetric framework and considering the

entire returns distribution. In a certain sense, a psychological explanation can

be suggested for choosing kurtosis as reference risk measure: simplifying, since

kurtosis pays more attention to high uncertainty and captures higher probability

of extremely significant changes in returns, by setting up a risk parity strategy

based on portfolio kurtosis, the investor can avoid a sense of regret or escape

the responsibility that could arise from taking net “bets” on kurtosis (instead of

splitting it homogeneously), that would appear more daring than “bets” regard-

ing volatility. This also becomes an economic rationale behind the design of the

new version for the risk parity strategy. Investors would dislike the fat tail on

the left, in contrast the fat tail on the right would be preferred. In presence of

possible contradictory effects, investor’s sentiment for uncertainty can lead to

rejecting a speculative stance in favour, instead, of a democratic distribution of

responsibility for the portfolio kurtosis.
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The importance recognized to kurtosis in investment decision is well moti-

vated although it is frequently omitted. Numerous empirical studies reveal that

most financial asset returns are not normally distributed. They exhibit fatter

tails than a gaussian distribution (they are leptokurtic) and asymmetry to the

left, more occasionally to the right [16, 17, 18, 19, 20].

It is also worth considering the findings, based on a large set of combinations

of portfolios of several sizes considered over a set of possible holding periods,

that diversification does not reduce kurtosis which becomes a persistent presence

[21]. Other authors [22] raised doubts about the benefit of international portfolio

diversification when higher order moments are considered in determining the

benefit itself.

Kurtosis is something which investors care about once distribution of returns

deviates from normality. [23], while studying the investor’s expected utility,

identified the direction of his preference for moments including kurtosis. They

concluded that usual investors dislike even central moments and, therefore, kur-

tosis as well, while they prefer odd central moments.

In the field of risk management, these results have motivated the use of

Modified VaR by [24] to estimate Value at Risk in a way that corrects Gaussian

VaR to consider skewness and kurtosis to allow a better risk monitoring and

alignment with investor preferences. Furthermore, the specific direction of pref-

erence for kurtosis has encouraged several attempts to model density functions

to account with flexibility of kurtosis detected in the empirical distributions

[25, 26].

In previous studies on portfolio construction, the acknoweledged relevance of

kurtosis was used in different ways. [27] developed a portfolio frontier resulting

from the goal of minimizing kurtosis for a given expected return and skewness.

Other authors [28, 29, 19, 30, 31] applied the polynomial goal programming

(PGP) approach. Starting from the stated preferences for common investors,

the method requires, at a first stage, to find a solution for each legitimate indi-

vidual goal separately: maximize expected return, maximize skewness, minimize

variance and minimize kurtosis subject to classical long-only and budget con-
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straints. At the second stage, the PGP method needs to find a solution for an

optimization problem consisting in minimizing the sum of the deviations of each

individual goal from its optimal value, with each moment deviation weighted by

a parameter expressing the investor’s importance for that moment. An alterna-

tive approach to deal with higher moments in portfolio construction is that of

maximizing expected utility when it is approximated by Taylor series expansion

up to a given order, precisely the fourth order [20].

This paper aims at exploring the use of kurtosis in the portfolio construction

framework represented by the risk parity. This differentiates its contribution

from previous studies: the goal becomes the homogeneous distribution of port-

folio kurtosis, rather than its minimization. As a related goal, the characteristics

of the “Equally Weighted Kurtosis Contribution Portfolio” are investigated and

compared to those of the traditional risk parity portfolio denominated “Equally

Weighted Risk Contribution Portfolio” [9]. An exam of the similarity or diver-

sity between the two strategies proves useful to gain awareness of the ability or

not of the risk parity based on kurtosis to avoid the most important criticisms

of the mean-variance efficient portfolios.

In developing the new risk parity strategy, the paper contributes to the ex-

isting literature with two methodological advances. First, a more tractable cal-

culation formula for portfolio kurtosis is provided. Unlike [20, 32, 33], who used

tensor matrices to compute portfolio kurtosis, a novel formula for the fourth-

order moment of the portfolio returns is established, The latter, besides being

easier to interpret statistically, allows to work out convenient closed-form ex-

pressions for the portfolio kurtosis. These formulas, highlighting the role played

by asset kurtosis and co-kurtosis, are employed to derive analytical expressions

for the marginal risk contributions to the portfolio kurtosis.

The paper implements both the traditional risk parity portfolio and the new

one based on kurtosis relying on sample estimates for input parameters. It is

well known the latter are sensitive to estimation errors, however it is not a task

of this paper to deal with the issue of sampling errors as it does not belong

the line of studies dedicated to improved and/or parsimonious estimates for
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financial assets and portfolio parameters [34, 35].

The new framework of the risk parity strategy and the traditional one are

then applied to a global equity investment universe of 7 MSCI indices using real

market data from January 2001 to December 2020. For this time interval, a

first dataset that contains monthly returns is considered, then combined with a

second dataset that contains weekly returns to perform a robustness check. Us-

ing these datasets, a study to investigate the portfolio effects of a strategy that

aims at the “democratization” of kurtosis in asset allocation and no longer to the

“democratization” of volatility [36] is carried out. To this end, a rolling sample

approach like that employed by [37] is implemented. This allows the compu-

tation of the portfolio weights for the Equally Weighted Kurtosis Contribution

Portfolios with different estimation window lengths and applying alternative

portfolio rebalancing frequencies.

As just stated, the investingation of the behavior of the new risk parity

strategy is carried out considering the asset classes as the primary “building

blocks” of a portfolio as it happens traditionally and practically for many asset

managers. There is awareness that, in the last decade or so, the interest for a

new type of “building blocks” has emerged. For this reason, Kurtosis-based Risk

Parity in a risk-factor-based asset allocation framework is a topic which surely

deserves to be also investigated. Dealing with assets, and then with risk factors,

corresponds to the sequential steps adopted for the traditional risk parity by

[9, 38].

The empirical results for the current work reveal that a kurtosis-based risk

parity strategy, compared to the classic risk parity, produces asset allocation

solutions characterized by extremely unbalanced portfolio weights. The non-

exclusion of any asset class does not prevent phenomena of excessive concen-

tration. Alongside this weakness, however the novel strategy proves effective in

terms of financial performance. The results suggest that the adoption of the

kurtosis-based risk parity, rather than the traditional risk parity, enhances the

risk-return profile of the portfolio providing higher Sharpe ratio, Sortino ratio

and Omega ratio.
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The remainder of this paper is organized as follows. In Section 2 the new risk

parity strategy based on kurtosis is developed. To this end, original formulas

for portfolio kurtosis and its gradient, which prove useful for the determina-

tion of the marginal risk contributions of the asset classes to portfolio kurtosis,

are established. Section 3 describes the dataset used for the empirical applica-

tion (subsection 3.1), provides an out-of-sample comparative analysis between

the new and the traditional risk parity strategy (subsections 3.2 and 3.3), and

performs a robustness test (subsection 3.4). Section 4 concludes the paper. Ap-

pendix A and Appendix B provides the proofs of methodological results carried

out in Section 2, while Appendix C includes some graphs of the series employed

in the empirical application.

2. Setting up Risk Parity based on portfolio kurtosis

As well known, the distinguishing feature of risk parity is that of recom-

mending portfolio weights such that portfolio risk is equally distributed among

asset classes. In the traditional risk parity approach, portfolio volatility serves

as reference measure for risk. Consequently, the portfolio weights are identified

in such a way that each portfolio component contributes equally to portfolio

standard deviation. In this study, portfolio volatility is replaced with portfolio

kurtosis as reference measure. Both these metrics capture dispersion. However,

the fourth moment puts much more weight on extreme movements and less

weight on small movements than standard deviation does. Reference to kurto-

sis, therefore, reflects the idea of spreading the responsibility for huge dispersion

around the mean homogeneously among the asset classes in the investment uni-

verse. The aim underlying this replacement is not to assert or demonstrate the

superiority of those that can be called “Equally Weighted Kurtosis Contribution

Portfolios” over the traditional “Equally Weighted Risk Contribution Portfolios”

[9], but investigate what they can mean in terms of different portfolio effects.

The new risk parity set-up hinges on the portfolio kurtosis, for which it is

here provided a novel closed-formula which proves useful for the computation
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of the the marginal kurtosis contribution of each asset class exposure. The

latter, which defines the sensitivity of the portfolio kurtosis to a small change

on an asset class weight, must be determined together with the total kurtosis

contribution. After that, portfolio kurtosis can be viewed as the sum of all

total kurtosis contributions. Starting from their definition, the optimization

problem for the Equally Weighted Risk Contribution Portfolio Kurtosis under

the traditional budget constraint and long-only constraint can be formulated.

2.1. An original representation of portfolio kurtosis - Rethinking portfolio kur-

tosis and its representation

Let R be the matrix of N returns observed over T periods

R
(N,T )

=




r
′

1
(1,T )

...

r
′

N
(1,T )



= [ x1

(N,1)
, . . . , xT

(N,1)
] (1)

where r
′

i is the set of T observations on the i-th return.

Dropping the pedix t, let x be the t-th column of the matrix R. The portfolio

p, at time t, can be written as

p = w
′

x (2)

where w is a N dimensional vector of non-negative weights such that w′u = 1

and u denotes a vector of 1′s. The portfolio mean, µp, and variance, σ2
p, are

given by

µp = w′
E[x] (3)

σ2
p = E[w′

Σw] (4)

where E[·] stands for expectation, and Σ = E[(x−E(x))(x−E(x))′] = E[x̃x̃′]

is the portfolio dispersion matrix. With this premise, the portfolio fourth-order

moment, µ4,p, and kurtosis Kp, can be expressed as follows

µ4,p = E[w′x̃x̃′w]2 (5)
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Kp =
E[w′x̃x̃′w]2

[E[w′Σw]]2
=

µ4,p

(σ2
p)

2
(6)

The portfolio kurtosis can also be expressed in terms of the kurtosis (K) and

co-kurtosis (CK) of single assets xs, s = 1, . . . , N

Ks =
E(x̃4s)

σ4
xs

=
E[xs − E(xs)]

σ4
xs

(7)

CKi,j,γ,r(x
k
i , x

l
j , x

g
γ , x

f
r ) =

E(x̃ki x̃
l
j x̃

g
γ x̃

f
r )

σk
xi
σl
xj
σg
xγσ

f
xr

, k+ l+ g+ f = 4, k, l, g, f ∈ N (8)

as follows

Kp =
1

σ4
p

N∑

j=1


w4

jσ
4
xj
K(xj) + 4

N∑

i=1,i 6=j

w3
jσ

3
xj
wiσxi

CK(x3j , xi)

+ 6

N∑

i=j+1

w2
j σ

2
xj
w2

i σ
2
xi
CK(x2j , x

2
i )

+ 12

N∑

i=1,i 6=j

N∑

r=i+1,r 6=j

w2
jσ

2
xj
wiσxi

wrσxr
CK(x2j , xi, xr)

+24

N∑

i=j+1

N∑

r=i+1

N∑

γ=r+1

wjσxj
wiσxi

wrσxr
wγσxγ

CK(xj , xi, xr, xγ)


 .

(9)

Eq. (9) follows from the multinomial theorem [see e.g., 39]. Note that the terms

involved in the equation are composed of N , 4N(N − 1), 6
(
N
2

)
, 12N

(
N−1
2

)

and 24
(
N
4

)
addends respectively, for a total of N4 elements which are the en-

tries of the fourth order moment matrix of the returns Ψ = E[x̃x̃′ ⊗ x̃x̃′],

where ⊗ denotes the Kronecker product. In particular, the last two terms in

Eq. (9), involving the co-kurtosis of triplets and quadruplets of the portfolio200

assets, CK(x2j , xi, xr) and CK(xj , xi, xr, xγ), are missing when N ≤ 2, while

the last one, CK(xj , xi, xr, xγ), is missing when N ≤ 3.

The following lemma provides an expression of the portfolio kurtosis which

proves useful in the following.

Lemma 1. The portfolio kurtosis has the following closed-form expression

Kp =
(w′ ⊗w′)Ψ(w ⊗w)

(w′ ⊗w′)(Σ⊗Σ)(w ⊗w)
(10)

9
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Proof. See Appendix A.

Eq. (10), which expresses the portfolio kurtosis in terms of the N2 ×N2 fourth

order moment matrix of the returns Ψ, is of easier interpretability from a sta-

tistical point of view than the one which hinges on the N × N3 tensor matrix

E[x̃x̃′ ⊗ x̃′ ⊗ x̃′] as in [20, 32]. In Appendix A the equivalence of the two type

of formulations is proved and it is explained how the entries of Ψ are specified

in terms of the fourth-order moments of the returns.

2.2. The specification of the Equally Weighted Kurtosis Contribution Portfolios

As well known, the RP approach hinges on the idea that portfolio risk must

be equally distributed among asset classes. In other words, risk parity prevents

a single component or a few portfolio components from assuming a prominent

role in guiding portfolio risk. This goal can be pursued for any risk measure

RM , provided it is homogeneous of degree one in the weights. In such a case,

the risk measure RM admits the Euler decomposition and it can be expressed

as sum of contributions, say ci(w), of its constituents

RM =

N∑

i=1

ci(w) =

N∑

i=1

wi

∂RM

∂wi

= c(w)′uN (11)

where c(w) = [ci(w)] = w ∗ ∂RM
∂w

, with ∗ denoting the Hadamard product, and

where uN is a N -dimensional vector of 1’s.

In light of Eq. (11), the risk parity portfolio can be identified by the condition

c(w) = uNc; s.t. w′uN = 1 and wi > 0 ∀i = 1, . . . , n. (12)

where c denotes a constant.

The portfolio standard deviation is a first order homogeneous function of the

weights with marginal risks given by

ρσp
=
∂σp
∂w

=
Σw√
w′Σw

. (13)

In order to determine the marginal risk contributions to the portfolio kurtosis,

we establish the following preliminary result.
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Theorem 1. The gradient of the portfolio fourth moment with respect to the

weight vector w is given by

ρµ4,p
=
∂µ4,p

∂w
= 2(IN ⊗w′ +w′ ⊗ IN )Ψ(w ⊗w). (14)

Proof. By the chain rule [see, e.g. 40, Sec. 10.7 p. 203] and taking into account

(5), we have
∂µ4,p

∂w′
=

∂µ4,p

∂(w ⊗w)′
· ∂(w ⊗w)

∂w′
(15)

where
∂µ4,p

∂(w ⊗w)′
= 2(w ⊗w)′Ψ (16)

by a well-known formula of matrix differential calculus, and

∂(w ⊗w)

∂w′
= K1N ⊗w + (K1Nw ⊗ IN ) = IN ⊗w +w ⊗ IN (17)

by Theorem 11 in [41] with the commutation matrix, K1N tallying, in this case,

with the identity matrix IN . Eventually, Eq. (14) follows from Eq. (16) and

(17).

Now, we can state the following result:

Theorem 2. The marginal risk contributions to the portfolio kurtosis with re-

spect to the weight vector w are the entries of the gradient vector

ρKp
=
∂Kp

∂w
=

ρµ4,p
σp − 4µ4,pρσp

σ5
p

(18)

with ρµ4,p
and ρσp

given by Eq. (14) and (13), respectively.

Proof. Eq. (18) follows from Eq. (6) by simple differentiation rules.

Now, let Σ̂ and Ψ̂ be sample estimates of the variance-covariance and fourth-

order moment matrices of the N assets and let σ̂2
p = w′

Σ̂w, and µ̂4,p = (w′ ⊗

w′)Ψ̂(w ⊗w) be estimates of the portfolio variance and fourth-order moment.

Furthermore, let ρ̂µ4,p
= 2(IN ⊗w′ +w′ ⊗ IN )Ψ̂(w ⊗w) and ρ̂σp

= Σ̂w√
w′Σ̂w

be estimates of ρµ4,p
and ρσp

, respectively.

11



Corollary 1. A RP portfolio based on kurtosis satisfies the condition in Eq. (12)

with ĉ(w) given by

ĉ(w) = w ∗ ρ̂Kp
(19)

where ∗ is the Hadamard product and

ρ̂Kp
=
∂K̂p

∂w
=

ρ̂µ4,p
σ̂p − 4µ̂4,pρ̂σ̂p

σ̂5
p

(20)

is a vector including estimates of the portfolio kurtosis marginal risks.

Proof. The proof is simple and it is omitted.

An optimal RP strategy, based on portfolio kurtosis as risk measure, consists

in finding a set of weights wi such that the contribution of each asset class

to portfolio kurtosis is, at least approximately, the same. According to this

argument, the optimization problem for the new risk parity strategy can be

formulated as follows:

w∗ = argmin
w

N∑

i=1

N∑

j=1

(ĉi(w)− ĉj(w))2

= argmin
w

tr[(ĉ(w)u′
N − uN ĉ(w)′)(uN ĉ(w)′ − ĉ(w)u′

N )]

S.T. w′u = 1

0 ≤ wi ≤ 1.

(21)

where ĉi(w) is the i-th element of ĉ(w) .

The optimization problem (21) solves the risk-parity problem by using the

least-squares approach, as proposed by [42]. The authors also suggests the

following alternative formulation

w∗ = argmin
w

N∑

i=1

(ĉi(w)− θ)2

S.T. w′u = 1

0 ≤ wi ≤ 1.

(22)

where θ =
∑N

i wiĉi(w)

N
. They observed that the least-squares formulations (21)

and (22) engender the same solutions, but the latter is less demanding com-
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putationally than the long-only risk parity via convex optimization given by

w∗ = argmin
w

K̂p(w)− c

N∑

i=1

ln(wi)

S.T.w′u = 1

wi > 0

(23)

where K̂p(w) = (w′⊗w
′)Ψ̂(w⊗w)

(w′⊗w′)(Σ̂⊗Σ̂)(w⊗w)
with Ψ̂ and Σ̂ denoting sample estimates

of Ψ and where Σ respectively, and c is an arbitrary constant. The use of the

logarithmic barrier term in (23) was also proposed by [9], [43] and [44]. Since Ψ

is positive definite and the logarithm function is strictly concave, the objective

function in (23) turns out to be strictly convex. This assures the uniqueness of

the solution. When the objective function of the optimization problem is non-

smooth and/or with potentially many local minima, as it occurs in the problem

under study, random initialization and multiple restarts proves to be suitable

[45]. Therefore, we have also taken advantage of the gosolnp function in the

R package Rsolnp.

3. Empirical applications

3.1. Data and methodology

In this section, the kurtosis-based risk parity strategy, KRP hereafter, pre-

sented in Section 2 is applied to real data in order to understand and compare

its empirical implications with results obtained from the traditional standard

deviation-based risk parity, SRP hereafter. The dataset considered for the scope

includes seven equity indices for the period from January 2001 to December

2020, i.e. a complete 20-year time interval. All the selected indices are from

Morgan Stanley Capital International and can appropriately represent the in-

vestment universe for a global equity portfolio manager. The indexes are: MSCI

EMU, MSCI UK, MSCI USA, MSCI CANADA, MSCI JAPAN, MSCI PACIFIC

EX-JAPAN, MSCI EMERGING MARKETS. These indices are considered in

the total return version and in the euro denomination.
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In the empirical analysis, monthly returns first and then weekly returns are

used. Daily returns are not considered, although they can exhibit stronger kur-

tosis than lower-frequency ones, because they are less suitable and rarely used

in practice for building medium-term or long-term strategic asset allocation so-

lutions. The main summary statistics for the investment universe are displayed

for both monthly and weekly dataset in Table 1. It provides evidence of the well-

known stylized facts on negative skewness and positive excess kurtosis that are

typically documented for financial assets. Not surprisingly, these characteristics

are more pronounced for the weekly dataset. For all series, with the sole excep-

tion of the MSCI Japan, the Jarque-Bera test significantly rejects the normality

assumption. Table 1 also shows that the returns of the dataset selected for the

empirical analysis, being entirely focused on equity investments, do not exhibit

particularly varied or disparate levels of volatility whatever the frequency of

returns considered is. Conversely, they show a much more pronounced degree

of differentiation in the levels of kurtosis, especially the weekly returns, rather

than the monthly ones. Accordingly, it can be argued that an asset management

company would act, in the case of adopting the traditional SRP strategy, within

a market context that is indifferent to the frequency of data used to represent

it. On the contrary, if the same asset management company adopted the new

KRP strategy, the reference market context would change from the monthly to

the weekly dataset, despite the presence of the same components.

To implement the out-of-sample study comparing KRP and SRP strategies,

a rolling window estimation procedure as in [37] is employed. Specifically, given

a T -period-long dataset of indexes returns, an estimation window of M -period

length is selected to estimate the input parameters needed to compute the opti-

mal portfolio weights according to the two strategies. From the above premises,

in the following periods may be expressed either in months or in weeks. Then,

the estimated weights are used to calculate the out-of-sample portfolio perfor-

mance during the following L periods, where L depends on the rebalancing

frequency applied. The process is repeated by moving the estimation window

L periods forward and computing again the optimal portfolio weights. In this
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Table 1: Summary statistics for the investment universe for monthly and weekly returns,

respectively.

Monthly data

Asset Mean Volatitily Skewness Kurtosis JB test (p-value)

MSCI EMU 0,00390 0,05208 -0,51241 4,47812 0,00000

MSCI UK 0,00249 0,04215 -0,51972 4,32250 0,00000

MSCI USA 0,00596 0,04309 -0,54427 3,72277 0,00020

MSCI CANADA 0,00574 0,05210 -0,63800 4,77753 0,00000

MSCI JAPAN 0,00312 0,04501 0,04854 3,47027 0,31572

MSCI PACIFIC EX JP F 0,00719 0,04995 -0,70870 4,71309 0,00000

MSCI EM 0,00836 0,05520 -0,49942 3,95109 0,00007

Weekly data

Asset Mean Volatitily Skewness Kurtosis JB test (p-value)

MSCI EMU 0,00101 0,02905 -0,88397 9,47673 0,00000

MSCI UK 0,00075 0,02725 -0,73907 12,75220 0,00000

MSCI USA 0,00149 0,02608 -0,45126 6,71352 0,00000

MSCI CANADA 0,00144 0,02911 -0,77275 10,14544 0,00000

MSCI JAPAN 0,00082 0,02640 -0,15708 5,45686 0,00000

MSCI PACIFIC EX JP F 0,00173 0,02705 -0,80730 10,49454 0,00000

MSCI EM 0,00194 0,02836 -0,19367 8,46072 0,00000
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way, each estimation window adds the returns for the next L periods and drops

the equivalent number of earliest returns. The process is continued repeatedly

until the end of the dataset is reached. The valuable outcome of this approach is

twofold: the computation of a series of T −M out-of-sample returns for each of

the risk parity strategies considered and the implementation of ((T −M)/L)+1

asset allocation experiments under realistic conditions, i.e. without relying on

forward-looking information.

The two strategies, KRP and SRP, are assessed along two directions. First,

the asset allocations obtained from the two strategies are investigated by exam-

ining their levels of concentration/diversification through the Shannon Entropy

measure. Second, the out-of-sample financial efficiency of the two strategies is

assessed by using some risk-adjusted performance measures, including metrics

that are not conditioned by the assumption of normality of the distribution of

returns.

From the computational point of view, the proposed empirical applications

have been conducted using an own written code in R.

3.2. Kurtosis-based risk parity at work

The empirical analysis first focuses on the monthly dataset. The KRP,

introduced in Section 2, has been implemented by employing alternative esti-

mation windows (60 and 120 months) and alternative rebalancing frequencies

(6 and 3 months). This allows to carry out a variable number of asset allocation

experiments, precisely equal to 31 (with an estimation window of 60 months

and semi-annual rebalancing frequency), 21 (with and estimation window of

120 months and semi-annual rebalancing frequency), 61 (with an estimation

window of 60 months and a quarterly rebalancing frequency) and 41 (with and

estimation window of 120 months and a quarterly rebalancing frequency). Port-

folio weights obtained following the KRP strategy and the SRP strategy for the

above mentioned combinations of estimation window and rebalancing frequency

are represented, respectively, in: Figure 1-left panel, Figure 1-right panel, Fig-

ure 2-left panel and Figure 2-right panel. It is worth noting that the weights,
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especially in the KRP case, even if small and difficult to grasp from the graphs,

are never equal to zero.

The results clearly show an important difference between KRP and SRP.

Although both risk parity strategies do not exclude any asset class from the

portfolio composition, they appear significantly different in the way portfolio

weights are distributed within the investable universe. In the case of the KRP

strategy, portfolio weights are extremely unbalanced. In particular, only one or

two asset classes play a visible dominant role in each optimized portfolio, while

the remaining asset classes are rarely given a weight above one per cent. This

findings suggest that implementing KRP in practice can be more difficult than

implementing the traditional SRP, although the investment universe is made

up of asset classes of the same nature, particularly for discretionary mandates

rather than investment funds. In addition, the upper section of Figures 1 and 2

shows moments of violent substitution of the dominant asset classes with others.

In such circumstances, an increase in transaction costs can obviously arise, at

least as regards proportional transaction costs. The different behavior of the

two risk parity strategies in terms of weight allocation to the asset classes also

emerges from Figure 3, which provides the dynamics of the Shannon Entropy

measure across the asset allocation experiments. It moves very close to the

maximum admissible value in the case of the SRP strategy, while for the new

KRP strategy it is close to zero for more than 50% of the asset allocation

experiments that use a 60-month estimation window and for almost 50 per cent

of the asset allocation experiments which make use of a 120-month estimation

window.

An explanation of the remarkable heterogeneity in the distribution of portfo-

lio weights characterizing the KRP strategy can be offered by Eq. (9). According

to this formula, within each estimation window, the contribution of the j − th

asset class’s returns to portfolio kurtosis can be expressed as

Kp,xj
=

1

σ4
p

3∑

i=0

CKp,xj
,i ; CKp,xj

,i = δiw
4−i
j σ4−i

xj
fj (24)

17



0.00

0.25

0.50

0.75

1.00

2005 2010 2015 2020

Date

W
e
ig

h
ts

index

MSCI CANADA

MSCI EM

MSCI EMU

MSCI JAPAN

MSCI PACIFIC

MSCI UK

MSCI USA

KRP weights: 60 months − 6 months

0.00

0.25

0.50

0.75

1.00

2012 2014 2016 2018 2020

Date

W
e
ig

h
ts

index

MSCI CANADA

MSCI EM

MSCI EMU

MSCI JAPAN

MSCI PACIFIC

MSCI UK

MSCI USA

KRP weights: 120 months − 6 months

0.00

0.25

0.50

0.75

1.00

2005 2010 2015 2020

Date

W
e
ig

h
ts

index

MSCI CANADA

MSCI EM

MSCI EMU

MSCI JAPAN

MSCI PACIFIC

MSCI UK

MSCI USA

SRP weights: 60 months − 6 months

0.00

0.25

0.50

0.75

1.00

2012 2014 2016 2018 2020

Date

W
e
ig

h
ts

index

MSCI CANADA

MSCI EM

MSCI EMU

MSCI JAPAN

MSCI PACIFIC

MSCI UK

MSCI USA

SRP weights: 1200 months − 6 months

Figure 1: Bar-charts representing the weights worked out using the KRP (top panels) and the

SRP strategy (bottom panels). The left panels refer to an estimation windows of 60 months

while the right ones to 120 months. The rebalancing frequency is of 6 months.
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Figure 2: Bar-charts representing the weights worked out using the KRP (top panels) and the

SRP strategy (bottom panels). The left panels refer to an estimation windows of 60 months

while the right ones to 120 months. The rebalancing frequency is of 3 months.
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Figure 3: Entropy of the portfolio weights when the SRP and KRP strategies are applied to

monthly data, using different estimation windows and rebalancing frequencies

19



where δi are constant and the terms fj depend on the kurtosis, and co-kurtoses of

the j− th asset class’s returns (properly weighted with (powers) of the standard

deviations and weights of the other asset classes). As highlighted in Eq. (24),

the greater the term Kp,xj
, the higher the contribution of the asset class j to

portfolio kurtosis and the lower its associated weight determined in accordance

to a kurtosis-based risk parity. To provide evidences of this argument, the con-

tributions of the different asset classes Kp,xj
, j = 1, . . . , 7, have been computed,

for each pair of estimation window length and rebalancing frequency They are

reported in Table 2 together with the corresponding weight in the portfolio al-

location. Looking at Table 2 it is worth noting that the lower the contribution

Kp,xj
of an asset class to portfolio kurtosis, the higher its associated portfo-

lio weight. Thus, Eq. (9) and Eq. (24), examined together, have the merit of

highlighting how optimization within the KRP strategy is much harder than

optimization within the traditional SRP. The number of relevant interactions

among asset classes is so high that a decision making process consistent with

the new KRP strategy turns out to be computationally intensive.

3.3. Comparative analysis of out-of sample results

This section analyzes comparatively the behavior of the risk parity strate-

gies using time series of monthly out-of-sample returns generated by each of

them as starting point. This choice reflects reality, as it avoids considering an

optimization framework where the portfolio manager has perfect forecasts for

the expected returns of all asset classes in the investment universe.

First, the traditional and new risk parity strategy are compared in terms

of second and fourth statistical moments of the returns. Table 3 reports the

portfolio volatility and the portfolio kurtosis for each combination of estimation

window length and rebalancing frequency considered. The main and unequivo-

cal observation is that systematically the KRP strategy exhibits lower kurtosis

of its out-of-sample returns while it is the SRP strategy that systematically

shows a lower standard deviation of out-of-sample returns. Interestingly, both

strategies, despite the effect of unmanaged estimation errors as out-of-sample
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Table 2: Asset contributions Kp,x to portfolio kurtosis and asset class weights. In bold higher

weights corresponding to assets with lower CKp

60 months - 6 months 120 months - 6 months

Asset
Kp,x Weights Kp,x Weights

EW - 4 EW - 3

MSCI EMU 0,00770 1,62E-09 0,00858 3,3698E-09

MSCI UK 0,00770 1,23E-09 0,00858 1,1312E-08

MSCI USA 0,00770 7,28E-09 0,00858 8,1281E-08

MSCI CANADA 0,00214 0,49081 0,00321 0,43920658

MSCI JAPAN 0,00192 0,50919 0,00202 0,56079332

MSCI PACIFIC EX JP F 0,00770 1,4E-10 0,00858 3,5941E-10

MSCI EM 0,00770 7,41E-09 0,00858 2,307E-09

Asset
Kp,x Weights Kp,x Weights

EW - 5 EW - 4

MSCI EMU 0,00152 0,35361 0,00511 1,5273E-10

MSCI UK 0,00341 1,1E-10 0,00511 1,061E-08

MSCI USA 0,00190 0,23023 0,00348 0,22566061

MSCI CANADA 0,00331 6,65E-08 0,00301 0,27154602

MSCI JAPAN 0,00172 0,41617 0,00122 0,50279335

MSCI PACIFIC EX JP F 0,00307 1,61E-09 0,00511 5,1079E-09

MSCI EM 0,00307 3,2E-09 0,00511 1,1591E-09

60 months - 3 months 120 months - 3 months

Asset
Kp,x Weights Kp,x Weights

EW - 2 EW - 6

MSCI EMU 0,00622 0,2957 0,00854 4,9423E-10

MSCI UK 0,00672 8,35E-08 0,00854 4,7294E-09

MSCI USA 0,00672 1,44E-07 0,00854 1,2544E-07

MSCI CANADA 0,00672 2,44E-08 0,00289 0,46318896

MSCI JAPAN 0,00327 0,7043 0,00217 0,5368109

MSCI PACIFIC EX JP F 0,00672 1,38E-10 0,00854 1,0173E-10

MSCI EM 0,00672 6,13E-09 0,00854 6,4262E-09

Asset
Kp,x Weights Kp,x Weights

EW - 3 EW - 7

MSCI EMU 0,01664 6,05E-08 0,00526 1,0166E-09

MSCI UK 0,01664 6,22E-08 0,00526 1,2113E-08

MSCI USA 0,01374 0,113221 0,00359 0,22566081

MSCI CANADA 0,01664 2,41E-08 0,00311 0,27154585

MSCI JAPAN 0,01664 5,41E-09 0,00125 0,50279332

MSCI PACIFIC EX JP F 0,01664 3,75E-10 0,00526 6,2523E-09

MSCI EM 0,00458 0,886779 0,00526 2,4183E-09
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returns are considered, confirm they perform better where one would expect by

construction.

Second, the financial efficiency of the SRP and the KRP strategy are eval-

uated by directly comparing different risk-adjusted performance measures. Ini-

tially, the Sharpe ratio is computed for each pair of estimation window and

rebalancing frequency. The Barclays 3 month Euribor Cash Index is used as as

risk-free rate. Results, presented in Table 4, reveal that the new KRP strategy

persistently achieves better return above the risk-free returns for unit of risk.

This is mainly attributable to its visibly higher mean return, since the volatility

is less favourable for this strategy. In this regard, it is worth noting that the dif-

ference of the Sharpe Ratios of the two strategies is statistically significant whent

the 120-month estimation window is used. The test is based on a studentized

bootstrap approach with [46]’s block bootstrap [47]. In addition to the Sharpe

ratio, alternative risk-adjusted performance measures, such as the Sortino Ratio

and the Omega measure are computed, always in an annualized version. They

are appropriate because they do not require the normal distribution assumption

of out-sample returns which is rejected, for both strategies, by the Jarque Bera

test (Table 5). As well known, Sortino ratio modifies the Sharpe ratio using the

downside risk as denominator and considering the mean return over a chosen

minimum acceptable return, MAR, as excess return. With the Omega measure,

the out-of-sample returns are partitioned into losses and gains compared to a

minimum acceptable return and then the probability weighted ratio of returns

above and below this threshold is considered.The minimum acceptable return

is identified with the risk-free rate .

The results for the Sortino ratio and the Omega measure, also represented in

Table 4, are largely equivalent to those based on the Sharpe ratio. This implies

that the KRP strategy exhibits systematically an improvement in the financial400

efficiency relative to a SRP strategy. Accordingly, it results that a portfolio

strategy based on the equal distribution of responsibility for portfolio kurtosis

does not lead to a penalty on the financial side compared to a more traditional

risk parity approach.
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Table 3: Out of sample portfolio kurtosis and volatility for the KRP and SRP strategies

applied to monthly data, using different estimation windows and rebalancing frequencies

Estimation

window

Rebalancing

frequency

Risk Parity

Method

Out of sample Portfolio

Kurtosis Volatility

60 6
KRP 4,506 0,041

SRP 5,185 0,040

120 6
KRP 5,902 0,040

SRP 6,366 0,036

60 3
KRP 4,494 0,043

SRP 5,186 0,040

120 3
KRP 6,338 0,038

SRP 6,344 0,036

Table 4: Sharpe, Omega and Sortino ratios for monthly data obtained with the RKP and

SRP strategies by using different estimation windows and rebalancing frequencies (∗ indicate

a statistically significant difference between KRP and SRP Sharpe ratio with α = 0.1)

Estimation

window

Rebalancing

frequency

Risk Parity

strategy

Sharpe

ratio

Omega

ratio

Sortino

ratio

60 6
KRP 0,544 1,506 0,765

SRP 0,412 1,384 0,569

60 3
KRP 0,505 1,465 0,699

SRP 0,409 1,381 0,565

120 6
KRP 0,722∗ 1,767 1,095

SRP 0,652∗ 1,679 0,953

120 3
KRP 0,672∗ 1,718 1,011

SRP 0,651∗ 1,677 0,951

Table 5: Juarque-Bera test of monthly data obtained with the KRP and SRP strategies by

using different estimation windows and rebalancing frequencies

Estimation

window

Rebalancing

frequency

Risk Parity

method

JB test

Statistic p-value

60 6
KRP 38,75 <0.0001

SRP 49,82 <0.0001

120 6
KRP 51,37 <0.0001

SRP 69,58 <0.0001

60 3
KRP 41,55 <0.0001

SRP 49,98 <0.0001

120 3
KRP 48,20 <0.0001

SRP 68,48 <0.0001
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3.4. Robustness check with weekly data

In this section, the results of additional analyses aimed at testing the ro-

bustness of the previous findings are discussed. The portfolio effects and the

performance of KRP and SRP strategies using the weekly frequency for the

returns of the same investment universe are examined.

The shorter holding period implied by these returns makes it reasonable to

identify portfolio solutions for investors with a shorter investment horizon and

willing to make more frequent rebalancing. Therefore, estimation windows of

different length are considered: 5 years (60 months), 10 years (120 months), 1

year (52 weeks) and 2 years (104 weeks). Then, portfolios with monthly (i.e.

every 4 weeks) and bi-monthly (i.e. every 8 weeks) rebalancing, and no longer

with quarterly or semi annual rebalancing, are computed. Figures 4 and 5 show

the results for the alternative estimation windows and alternative rebalancing

frequencies considered. They confirm the base case results obtained with the

monthly dataset. Once again, a much more unbalanced and erratic portfolio

structure emerges from the application of the KRP strategy. The Shannon

Entropy measure again shows a different behavior depending on the risk parity

strategy adopted. Figure 6 shows that the index keeps close to the maximum

value (close to 2) across the asset allocation experiments when the SRP strategy

is adopted, while in case of use of the KRP strategy it shows a very unstable and

oscillating behavior, also including numerous cases in which it is very close to

zero. Table 6, through the consideration of some asset allocation experiments,

provides evidence that suggests exposures to asset classes within the KRP-based

portfolios are inversely linked to their contribution to the portfolio kurtosis, just

as was the case for the monthly dataset.
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Figure 4: Bar-charts representing the weights worked out using the KRP (left panels) and the

SRP strategy (right panels). The estimation windows is 52 weeks long and the rebalancing

frequency is of 4 weeks.
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Figure 5: Bar-charts representing the weights worked out using the KRP (top panels) and the

SRP strategy (bottom panels). The estimation windows is 104 weeks long. The left panels

refer to a rebalancing frequency of 4 week, while the right ones to 8 weeks.
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Table 6: Asset contributions CKp
to portfolio kurtosis and asset class weights. In bold higher

weights corresponding to assets with lower CKp,j

52 weeks - 4 weeks 104 weeks - 4 weeks 104 weeks - 8 weeks

Asset

CKp
Weights CKp

Weights CKp
Weights

EW - 2 EW - 30 EW - 3

MSCI EMU 0,00527 1,3487E-08 0,00247 0,56205 0,00436 1,9602E-08

MSCI UK 0,00527 1,04539E-10 0,00845 1,186E-08 0,00274 0,32691

MSCI USA 0,00408 0,16978 0,00845 7,8023E-07 0,00415 0,05855

MSCI CANADA 0,00106 0,54854 0,00845 1,6348E-09 0,00461 4,4547E-09

MSCI JAPAN 0,00317 0,28168 0,00845 8,2236E-08 0,00156 0,50781

MSCI PACIFIC EX JP F 0,00527 1,28801E-10 0,00533 0,43795 0,00485 3,9509E-09

MSCI EM 0,00527 2,49953E-08 0,00845 6,4183E-10 0,00395 0,10673

Asset
CKp

Weights CKp
Weights CKp

Weights

EW - 3 EW - 31 EW - 4

MSCI EMU 0,00392 0,27927 0,01377 2,1895E-08 0,00173 0,36005

MSCI UK 0,00472 8,49275E-10 0,00246 0,58624 0,00307 3,2395E-09

MSCI USA 0,003717 0,15058 0,00489 0,41376 0,00209 0,16164

MSCI CANADA 0,00469 4,29311E-09 0,01598 7,6962E-10 0,00292 1,5635E-08

MSCI JAPAN 0,00168 0,57015 0,01598 3,4095E-08 0,00170 0,38974

MSCI PACIFIC EX JP F 0,00461 7,83091E-10 0,01598 1,7021E-07 0,00300 1,149E-08

MSCI EM 0,00461 4,39269E-08 0,01598 2,1924E-08 0,00241 0,08857

As done before in Section 3.3, the relevant characteristics of the out-of-

sample returns provided by the two risk parity strategies are assessed. As

expected, they don’t follow a normal distribution: the null hypothesis of the

Jarque-Bera test is always rejected (Table 9.). The results shown in Table 7

for the riskiness of the two strategies are clear: regardless of the estimation

window and the rebalancing frequency considered, the KRP strategy systemat-

ically implies a lower kurtosis of out-of-sample returns. We can afford to say

that the discrepancy between the out of sample kurtosis relating to the KRP

strategy and that relating to the SRP strategy becomes more visible than it was

when the monthly dataset was used. This motivates the impression that the

“democratization” of kurtosis also helps its mitigation at least in comparison

with a strategy that neglects attention for this statistical moment when it is

more pronounced.

From a financial point of view, the risk-adjusted performance of the com-

peting risk parity strategies can be measured again by the Sharpe ratio, the

Sortino ratio and the Omega ratio. Table 8 reports the results obtained using

the weekly out-of-sample returns. Looking at it, the conclusion is that the KRP
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Figure 6: Entropy of the portfolio weights when the KRP and SRP strategy are applied to

weekly data, using different estimation windows and rebalancing frequencies.
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strategy provides persistently better reward per unit of risk taken, whatever

the way the risk is interpreted. Indeed, KRP strategy produces higher Sharpe

ratios, Sortino ratios and Omega ratios. In sum, the results previously obtained

for the KRP strategy also hold for alternative data frequencies, alternative esti-

mation windows and alternative rebalancing frequencies. Furthermore, with the

weekly dataset, the test for differences in the Sharpe Ratio of the two strate-

gies is statistically significant for any combination of estimation window and

rebalancing frequency considered.

Table 7: Out of sample portfolio kurtosis and volatility for the KRP and SRP strategies

applied to weekly data, using different estimation windows and rebalancing frequencies

Estimation

window

Rebalancing

frequency

Risk Parity

Method

Out of sample Portfolio

Kurtosis Volatility

52 4
KRP 8,209 0,025

SRP 10,850 0,023

104 4
KRP 9,971 0,023

SRP 11,552 0,023

104 8
KRP 10,215 0,024

SRP 11,594 0,023

Table 8: Sharpe, Omega and Sortino ratios for weekly data obtained with the KRP and SRP

strategies by using different estimation windows and rebalancing frequencies (∗ indicate a

statistically significant difference between KRP and SRP Sharpe ratio with α = 0.1)

Estimation

window

Rebalancing

frequency

Risk Parity

strategy

Sharpe

ratio

Omega

ratio

Sortino

ratio

52 4
KRP 0,349∗ 1,145 0,476

SRP 0,220∗ 1,087 0.301

104 4
KRP 0,490∗ 1,211 0,670

SRP 0,411∗ 1,168 0,566

104 8
KRP 0,490∗ 1,211 0,670

SRP 0,449∗ 1,185 0,621

4. Conclusion

There exists a wide literature illustrating the drawbacks of the well-known

Mean-Variance Optimization when put into practice. Consequently, consider-

able effort has been devoted both to improve the Markowitz model and to seek
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Table 9: Juarque-Bera test of weekly out-of-sample returns obtained with the KRP and SRP

strategies by using different estimation windows and rebalancing frequencies

Estimation

window

Rebalancing

frequency

Risk Parity

method

Out of sample

JB statistic p-value

52 4
KRP 1.204,76 <0.0001

SRP 2.580,42 <0.0001

104 4
KRP 2.012,39 <0.0001

SRP 3.022,33 <0.0001

104 8
KRP 2.151,84 <0.0001

SRP 3.050,55 <0.0001

alternative portfolio construction methodologies. The latter include the risk-

based strategies and, therefore, also the risk parity strategy on which this con-

tribution is focused. Precisely, this paper provides a new version of the strategy

where portfolio volatility is replaced by portfolio kurtosis as a reference mea-

sure. The goal of the strategy, called KRP (Kurtosis-based Risk Parity), is to

identify portfolio weights in such a way that its constituents contribute homo-

geneously to portfolio kurtosis, which is different from an objective of kurtosis

minimization found in already existing works. In the effort to set up the new

KRP, an original closed-form expression for portfolio kurtosis and an equally

original decomposition of the same in its marginal and total kurtosis contribu-

tions have been established. The new strategy is implemented, and compared

with the traditional standard deviation-based risk parity, using real data with

both monthly and weekly frequency, from January 2001 to December 2020, in

relation to a global equity investment universe. In order to appreciate potential

similarities or differentiations of the two strategies under realistic conditions

in terms of portfolio implications, out-of-sample analyses exploiting the rolling

window estimation procedure described by [37] have been implemented.

The empirical results reveal lights and shadows of the KRP strategy.The

portfolio allocations driven by an idea of “democratization” of kurtosis are much

more unbalanced and erratic than those originated by an idea of “democrati-

zation” of volatility, although in both cases no asset class is excluded from the
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portfolio weights vector. This finding suggests that implementing KRP strategy

in practice can be more difficult than implementing the traditional risk parity.

Nor does it allow us to consider ourselves completely protected from a criticism

of portfolio structures commonly attributed to Markowitz’s Mean-Variance Op-

timization, i.e. their unstable behavior. However, the empirical results are

very appealing from a financial point of view. Using different risk adjusted

performance measures, we show that “Equally Weighted Kurtosis Contribution

Portfolios” resulting from the KRP strategy have a better risk-return profile

than portfolios deriving from the classic risk parity.

This work allows for future extensions. An interesting development could

be to test the KRP strategy with an effort for the issue of handling estimation

errors of higher-order co-moments. However, the most obvious extension for

this work consists in performing the proposed new risk parity strategy using

risk factors, instead of asset classes, as building blocks of an asset allocation

solution, as proposed by [48] and [49].

Data Availability

The data that support the findings of this study are available from the

corresponding author, Prof. Maria Grazia Zoia, upon reasonable request. Re-

strictions apply to the availability of these data, which were used under license

for this study.
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Appendix A. Proof of Lemma 1

Eq. (10) can be worked out from Eq. (6) with simple algebra as follows

µ4,p = E(w′x̃x̃′w)2 = E[vec(w′x̃x̃′ww′xx′w)] = E[(w′⊗w′)vec(x̃x̃′ww′xx′)]

= E[(w′ ⊗w′)(x̃x̃′ ⊗ (x̃x̃′)vec(ww′)] = E[(w′ ⊗w′)(x̃x̃′ ⊗ (x̃x̃′)(w ⊗w)] =

(A.1)

where Ψ = (x̃x̃′ ⊗ (x̃x̃′) and use has been done of the formula linking the vec

and the Kronecker operator

vecABC = (C ′ ⊗A)vec(B) (A.2)

which holds for matrices A,B,C which are conformable for the product.

In the same manner, it can be worked out the expression (w′⊗w′)(Σ⊗Σ)(w⊗w)

for the square of the portfolio variance.

σ2
p = E[(w′

Σw)2] = E[vec(w′
Σww′

Σw)] = E[(w′ ⊗w′)vec(Σww′
Σ)]

= E[(w′ ⊗w′)(Σ⊗Σ)vec(ww′)] = E[(w′ ⊗w′)(Σ⊗Σ)(w ⊗w′)] (A.3)

Specification of Ψ

The entries, ψi,j , of the matrix Ψ, can be expressed in terms of the fourth-order

moments E(x̃γ x̃pxkx̃l) of the N assets x̃f = E(xf−E(xf )) with f = 1, 2, . . . , N ,

as follows

ψi,j = E(x̃γ x̃px̃kx̃l) (A.4)

where

γ =





1 if 1 ≤ i ≤ N

2 if N + 1 ≤ i ≤ 2N

. . .

N if (N − 1)N + 1 ≤ i ≤ N2

k =





1 if i = 1 + g

2 if i = 2 + g

. . .

N if i = N + g

, (A.5)
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where g = 0, N, . . . , (N − 1)N . Similarly, the indexes p and l are defined as γ

and k, with the row-index i replaced by the row-column j

p =





1 if 1 ≤ j ≤ N

2 if N + 1 ≤ j ≤ 2N

. . .

N if (N − 1)N + 1 ≤ N2

l =





1 if j = 1 + g

2 if j = 2 + g

. . .

N if j = N + g

. (A.6)

For instance, if N = 3, the entry ψ5,7 = E(x̃2x̃3x̃2x̃1) = E(x̃1x̃
2
2x̃3) and can be

estimated by 1
T−1

∑T
i=1(x̃1x̃

2
2x̃3) where T denotes the sample size.

Appendix B. Equivalence of the fourth order moment µp with the

formula based on tensors

The representation of portfolio kurtosis based on tensor rests on the following

portfolio fourth moment representation

µp,tensor = w′
Θ(w ⊗w ⊗w) (B.1)

with Θ = E(x̃x̃′ ⊗ x̃′ ⊗ x̃′).

The equivalence of µp,tensor with

µp = (w′ ⊗w′)Ψ(w ⊗w) (B.2)

with Ψ = E(x̃x̃′ ⊗ x̃x̃′) can be proved as follows. Taking the vec of µp,tensor

and µp yields

vec(w′
Θ(w ⊗w ⊗w)) = (w′ ⊗w′ ⊗w′ ⊗w′)vecΘ, (B.3)

vec(w′
Ψ(w ⊗w ⊗w)) = (w′ ⊗w′ ⊗w′ ⊗w′)vecΨ (B.4)

As for vecΘ and vecΨ, by using result by [50], some computations prove that

vecΘ = (IN ⊗KN2,N )[vec(x̃x̃′)⊗ vec(x̃′ ⊗ x̃′)]

vecΨ = (IN ⊗KN,N ⊗ IN )[vec(x̃x̃′)⊗ vec(x̃x̃′)]
(B.5)
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and the right-hand sides of the above formulas are the same upon noting that

(IN ⊗KN2,N ) = (IN ⊗KN,N ⊗ IN ) and that vec(x̃′ ⊗ x̃′) = x̃⊗ x̃ = vec(x̃x̃′),

as some computations prove.
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Appendix C. Plots

Figure C.1: Monthly total returns of MSCI EMU, MSCI UK, MSCI USA, MSCI CANADA,

MSCI JAPAN, MSCI PACIFIC EX JAPAN, MSCI EMERGING MARKETS, respectively

from left to right.
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Figure C.2: Weekly total returns of MSCI EMU, MSCI UK, MSCI USA, MSCI CANADA,

MSCI JAPAN, MSCI PACIFIC EX JAPAN, MSCI EMERGING MARKETS, respectively

from left to right.
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