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Abstract 

This article applies the autocatalytic percolation model developed by Cantono and Solomon (2010) 

to the diffusion of environmental innovation. It contributes to the recent applied microeconomic 

diffusion literature by unveiling diffusion dynamics, by determining under what conditions is 

diffusion self-sustaining and by defining the optimal dynamic schedule of adoption subsidies which 

insures autonomous propagation. To this end a model which combines in a unique framework a 

learning curve model of dynamic cost reductions, a discrete choice model of heterogeneous 

technology adoption and a contagion model of technology diffusion is developed. It is shown that 

the system dynamics are discontinuous, path-dependent and irreversible. Propagation dynamics are 

uncovered: diffusion occurs along subsequent conquers of islands of potential adopters. Under 

certain circumstances diffusion is self-sustaining. In other occasions diffusion is confined to a 

negligible sub-set of the entire population of potential adopters. In the latter case a policy 

intervention can drive the system to overall propagation. This can be achieved by adoption 

subsidies which, in order to be effective and to avoid a waste of resources, must follow an optimal 

dynamic schedule. It is shown that the phasing-out stage is as important as the early stage of the 

intervention. 
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I. INTRODUCTION 

 

Time-delayed diffusion paths have been challenging economists since Griliches (1957) seminal 

contribution. Innovations spread initially slowly because of a combinations of factors ranging, 

broadly speaking, from epidemic-like contagion mechanisms, to information problems, 

heterogeneity, uncertainty and expectations (Mansfield, 1961, 1968; Bass, 1969; David, 1969; 

Davies, 1979; Stoneman, 1980). Although researchers have been acquainted with the notion of 

barriers to overall propagation, nonetheless the phase of diffusion still arouses interest today 

especially when dealing with environmentally friendly technologies. A considerable collection of 

scientific articles has investigated the reasons lying behind the discrete extent of success of 

environmental innovations
1
. Some obstacles have been detected and several policy actions have 

been directed to remove them. Yet the territory conquered so far by environmentally friendly 

technologies looks limited if compared to the relevant role played by their widespread adoption in 

the delicate relationship between economic growth and environmental sustainability (Jaffe et. Al. 

2003; Jaffe et. Al., 2005; Popp et al., 2009). In addition to that, their policy domain shows signs of 

hysteria which manifest themselves either through firms’ fear of a solitary future not anymore 

sustained by public interventions or through politicians’ fear of failure who see their taxpayers’ 

money wasted on presumed unsuccessful trials. 

Drawing on the applied microeconomic diffusion literature this paper deals with the diffusion of 

environmental technologies and its policy implications. 

The fact that many environmental beneficial technologies do not spread in the market despite their 

cost-effectiveness has been analyzed by Jaffe and Stavins (1995) in one of their most celebrated 

article. Through a rational choice model of technology adoption, they showed how the meager 

result achieved by energy-saving technologies may be due to high-up front adoption costs and to 

principal / agent problems. Heterogeneity is in fact unlikely to explain alone time-delayed 

propagation paths. High up-front costs and information related issues inflict additional agony. Their 

model has been successfully extended to the analysis of learning curve cost reductions (Isoard and 

Soria, 2001; Soderholm and Klaassen, 2007). Eco-innovations diffusion may be enhanced by future 

cost reductions which, if free to work, could mitigate the considerable burden imposed by high 

initial costs. Yet learning curves seem insufficient, even despite favourable and promising 

estimations (McDonald and Schrattenholzer, 2000). One possible candidate for an explanation is the 

limited extent of information transfers from past to future adopters. Barriers to the flow of 

information could delay the initial phase of the propagation process thus limiting the effect of 

learning curves by confining the wave of diffusion to a negligible subset of the population of 

potential adopters. As it will be shown in this paper this might indeed be the case. 

                                                 
1
 See Kemp (1997), Carraro (1999), Van Den Bergh and Gowdy (2000), Janssen and Jager (2002), Kobos et. Al. 

(2006), Pan and Kohler (2007), Faber and Frenken (2009), Sterner and Turnheim (2009), Faber et. Al. (2010), 

Soderholm and Pettersson (2011), Woersdorfer and Kaus (2011). The list is not pretended to be exhaustive. For further 

references see also Rennings (2000) and Jaffe et. Al. (2003). For a comprehensive view of technological diffusion see 

Stoneman (2002). 



Generally defined as peer-to-peer mechanism, the relevance of understanding interdependence 

among economic agents in terms of local transfers of information / knowledge not globally 

available makes it a topical subject matter, and it is often modelled through the aid of social / 

economic networks games (Cowan and Jonard, 2004; Morris, 2000). Here a different approach is 

taken. By drawing on several successful marriages between percolation theory and the analysis of 

the propagation of new technologies (Antonelli, 1996; Silverberg and Verspagen, 2005, Frenken et. 

Al. 2008; Hohnisch et. Al., 2008; Cantono and Silverberg, 2009; Frenken et. Al., 2009) the model 

presented in this paper applies the autocatalytic percolation framework developed by Cantono and 

Solomon (2010) to the diffusion of environmental innovations and it investigates its policy 

implications. 

The first contribution of the present work is to uncover diffusion dynamics. To this end a model 

which combines in a unique framework a learning curve model of dynamic cost reductions, a 

discrete choice model of heterogeneous technology adoption and a contagion model of technology 

diffusion is developed. In such an environment, the underlying dynamics of the propagation process 

are unveiled: diffusion occurs along narrow channels and sudden explosions, i.e. through a series of 

isolated communities of potential adopters. Highlighted in the past (Karshenas and Stoneman, 1993) 

and recently contextualized in the domain of demand-induced innovations (Foellmi and 

Zweimuller, 2006), non-mixing populations emerge in the present model out of the intertwining 

between potential adopters’ heterogeneity and the network of interactions through which 

information flows. Formally, it is assumed that there exist a new technology ready to be 

commercialized and available to a heterogeneous population of firms located in a business network. 

The new technology is a new cleaner production process embedded in a capital good supplied by a 

monopolist (for example an energy saving technology). The adoption cost is common knowledge 

and decreases according to learning curve costs reductions. Diffusion is endogenous, there is a 

positive feedback loop between the cumulative number of adopters and the pace of learning 

economies: diffusion depends on costs reductions which in turn depends on the extent of diffusion
2
. 

Firms receive information about the technology by contact with past adopters which are their 

business partners and compare their private information about the benefit from adoption, which are 

heterogeneous, with the cost. However only when the former is greater than the latter will a firm 

adopt the new technology. In other words adoption takes place not only by information transmission 

but it is also the outcome of a rational, though basic, decision process. While in this paper the most 

simple mechanism of processing information is assumed (i.e. direct transfer) the growing field of 

social learning is endowed with a set of significant models able to explain how the way in which 

information is processed may influence the choice of adoption (Bandiera and Rasul, 2006; Krishnan 

                                                 
2
 While it is true that in this sense diffusion is endogenous, costs reductions depend on the extent of diffusion at a 

constant rate (i.e. the learning coefficient) which is a parameter of the model. In other words we do not model a 

simultaneous innovation – diffusion model that would require an explanation on how R&D efforts impact the pace of 

diffusion through the extent of learning economies. Yet it is an important issue as shown by Soderholm and Klaassen 

(2007). 



and Shubba, 2009; Conley and Udry, 2010). How sensitive the results presented in this paper are to 

the inclusion of social learning is a challenging question left to future work. 

A second contribution of this paper is that of defining the emergent aggregate equilibria of the 

system thus, implicitly determining under what conditions is diffusion self-sustaining. It will be 

shown how the intertwining between learning curve costs reductions, heterogeneity and the network 

of interactions through which information flows can generate a powerful autocatalytic feedback 

loop: given an arbitrary initial level of the adoption cost for a given initial number of adopters, a 

certain fraction of individuals become adopters; this in turn will result in a decrease in the adoption 

cost which will lead to an increase in the density of potential adopters, which in turn will cause an 

increase in the number of adopters, which will trigger a further decrease in the adoption cost, and so 

on. The autocatalytic feedback loop between the density of potential adopters, the increase in the 

extent of diffusion and endogenous cost reductions renders the system dynamics discontinuous, 

path-dependent and irreversible. Under certain conditions the regions of the system dynamics are 

characterized either by a negligible level of propagation which hangs up at an apparently stable 

state ready to be spurred by a minimum disturbance, or by an insignificant conquest because 

entrapped in isolated communities of adopters, or by overall propagation. Once the critical mass is 

reached the pace of learning economies along with diffusion clusters’ size dynamics enhance a self-

sustaining propagation process. 

Diffusion dynamics are rarely debated by the scientific community thanks to the general consent 

around the logistic function. However there is a renewed interest on the topic as documented by 

important contributions related to our work. In the spirit of the pioneering work by Galeotti (2006), 

Jackson and Yariv (2007) investigate the dynamics of the diffusion of strategic behavior and they 

characterize the equilibrium properties of the system in a network game. By assuming different 

mechanisms and by employing a diverse methodology it is remarkable to note that we come to very 

similar conclusions
3
. Young (2009) extends the classes of epidemic, social influence and social 

learning models to heterogeneous populations of potential adopters. He founds that the 

characteristic dynamics exhibited by the three classes of models survive to the introduction of 

heterogeneity and that they may be employed alternatively depending on the specific application. 

While the contribution offered by the present paper is somehow more specific, it does however 

improve on one of the question left unanswered and highlighted by Young himself, i.e. the 

influence of the introduction of a network structure. His epidemic-type of model (the closest to that 

proposed here) cannot explain the case in which the ideal equilibrium is not reached. New 

technologies that would otherwise conquer a large set of adopters are often limited to a much 

smaller set even if the set of potential adopters is very large. This might be due, as the present work 

illustrates, to limited communication within the system which impede to the diffusion process to 

reach some (or many) of the potential adopters. 

                                                 
3
 Showing why it is so it is beyond the scope of the present work. However, at a first sight, the interaction between 

heterogeneity and the network structure through which information flows (whether modelled through network games or 

through percolation) seems to mark an undeletable sign on the properties of aggregate equilibria. 



Entrapped by isolated clusters of adopters and timidly incited by favourable learning economies, 

new technologies may end up in a never-ending struggle for freedom. In that case, only an external 

intervention could spur the propagation process or the new technology would be left to its destiny. 

Fair enough, if it concerns diffusion in a perfect competitive market where adopters take their 

decisions aided by complete knowledge and perfect foresight. Problematic otherwise in an a priori 

biased environment. That of planning and scheduling an optimal strategy for policy support towards 

environmentally friendly technologies is indeed a cumbersome issue (Requate and Unold, 2003; 

Snyder et. Al., 2003; Kemp and Pontoglio, 2011; Timilsina et. Al., 2011). The present work is 

limited to the analysis of adoption subsidies. Being an element of the set of market-based 

instruments, adoption subsidies benefit from the merits of their class (Jaffe et al., 2005). In the face 

of high up-front costs they look dynamically effective (Jaffe and Stavins, 1995). Although it might 

be difficult to chose the best available technological options even if subsidies were the correct 

policy to implement (Soderholm and Pettersson, 2011), nonetheless their wide real applications 

need scientific inquiries to sustain decision makers and the need is felt the most in the phasing-out 

stage. The third contribution of this work is thus that of defining the optimal dynamic schedule of 

subsidies which insures self-sustaining diffusion. In the regions of the system dynamics 

characterized by microscopic diffusion a dynamic policy of such a type could accompany the 

process until the moment it becomes self-sustaining and the model offered here depicts the optimal 

path which if over-reproduced would lead to an excessive use of resources and, at the same time, it 

would not guarantee diffusion for not only the extent of the policy but also its length matters; if 

under-reproduced would lead to a failure and the process would simply stop. 

The remainder of the paper is organized as follows. Section II describes in details the application of 

the autocatalytic percolation model to the diffusion of environmental technologies. Section III 

illustrates the main dynamics of the model. Section IV presents the optimal dynamic schedule of 

adoption subsidies. Section V illustrates the results and implications from the Monte Carlo 

simulations. Section VI offers the conclusions and future outlook. 

 

II. THE MATHEMATICAL FORMULATION OF THE MODEL AND ITS PRELIMINARY 

RESULTS 

 

By drawing on the model developed by Cantono and Solomon (2010), this section illustrates the 

mathematical formulation of the autocatalytic percolation model of environmental technology 

diffusion. 

It has been argued in the introduction that one of the reason lying behind time-delayed diffusion 

path of environmental technologies may be the existence of barriers to the free flow of information. 

Although the presence of an endogenous learning mechanism in the decision process is not peculiar 

to the adoption of environmental technologies, nonetheless it is realistic to assume that at least in 

certain relevant cases there are internal feedbacks between past and future adopters concerning the 

performance and reliability of such a kind of technologies and the more they are free to flow, the 

more efficient and cost-effective opportunities may be selected. Instead of focusing on the way in 



which information is processed (and how it consequently influences the choice of adoption), here 

the attention is turned to the pattern of information transmission in order to understand how it 

interacts with the other mechanisms reproduced by the model (i.e. heterogeneity and endogenous 

cost reductions) and, ultimately impacts on diffusion dynamics. To this end a simple mechanism of 

information processing is assumed, that of direct transfer through contact between neighbours. 

Consider a set of firms labelled by an index Mi ,...,2,1= . Firms are located at each node of a 

business network and are connected through the links ji,  which form the network geometry. A bi-

dimensional regular lattice (Ising network) is assumed as the network structure. Information about 

the new cleaner production process spills over the business network through contact between 

business partners. The first necessary, but not sufficient, condition for adoption is thus defined: 

1. a firm waits until it receives a signal from at least a business partner who has already 

adopted. 

The diffusion of innovation is not a wave which overwhelms unconscious potential adopters. Once 

available, it does not spread in the market frictionless, as if it were a pure epidemic disease. It rather 

encounters a collection of connected heterogeneous individuals who perceive the advantages from 

adoption differently. In other words the extent of diffusion depends on the outcome of the adoption 

decision which is taken by each firm out of the comparison between their heterogeneous advantages 

and the disadvantages from adoption. In the present model firms heterogeneity is characterized by 

their gross benefit from adoption b . The sbi  are random independent variables drawn by a Pareto 

power law probability distribution: 

( ) µθθ −=>Ρ ib  for 1>θ  and ( ) 1=>Ρ θib  for 1<θ     

 

The choice of the probability distribution is based on the assumption that there is a positive relation 

between firms’ performance and their willingness to adopt new technologies. Firms’ performance 

has been found to display such power laws distribution (Axtell, 2001)
 4

. Firms with a relatively high 

willingness to adopt will approach the time of adoption earlier. Their structures of production may 

perform better in catching-up with innovations. The benefits may exceed the costs of renouncing to 

expected future cost reductions. On the contrary, firms characterized by a relatively low gross 

benefit are those firms who delay the adoption process. 

The decision rule, which is also the second condition for adoption, is thus defined as follows: 

2. firm i  adopts if and only if ki cb >  (where 0>kc  is the cost of adoption at time k , known 

to the population as a whole)
5
. 

In other words, adoption is a best response strategy if ki cb >  conditional on receiving a signal from 

at least a business partner who has already adopted
6
. The status of potential adopter is also defined: 

                                                 
4
 Substituting Eq. 1 with any exponential would not change the qualitative behaviour of the system. 

5
 The influence of important factors on the individual profitability of adoption, such as factor prices (Acemoglu and 

Filknstein, 2008), cannot be captured. Though in the case of energy-saving technologies, for example, factor prices 

seem to influence more the direction rather than the pace of diffusion (Jaffe and Stavins, 1995; Newel et al, 1999; Linn, 

2008). 



a firm i  is a potential adopter iff ki cb > . Following the assumptions above, the density of potential 

adopters at any given level of kc  is: 

µ
ρ

−
= kk c  for 1>kc       [1] 

 

Eq. 1 reproduces the first important mechanism of the model which expresses the influence of the 

system, represented by the global variable kc , on the status of its components, reflected by kρ . 

According to percolation theory there exists a critical density cρ  such that for any ck ρρ > , 

percolation takes place with probability one, i.e. the new technology conquers the entire market 

( 592.0=cρ  in a bi-dimensional lattice; see Stauffer and Aharony, 1994). At ck ρρ = , ⇒≡ ck cc  

µρ
1−

= ccc  which implicitly defines the percolation critical cost cc . The usual percolation setting 

would thus suggest that for any initial level of the cost 0c  which is lower than the percolation 

critical threshold cc  diffusion takes off unconditionally. Moreover the phase transition at ccc =0  is 

continuous. However by introducing the mechanism of learning curve cost reductions diffusion 

dynamics changes in nature. As it will be shown in the next section, the phase transition at the new 

critical value cc ,0  is discontinuous. 

Let us introduce the bottom-up mechanism of the model according to which the global status of the 

system described by kc  changes because of the changes in the status of its component, kN  (i.e. 

because of the number of firms that have switched from potential adopters to adopters). Given its 

initial level 0c , the cost of adoption is expected to decrease exponentially with the increase in the 

cumulative number of adopters kN  according to: 

α−

−= 10 kk Ncc        [2] 

 

where 10 ≤≤ α  is the learning coefficient
7
. 

Only one mechanism is missing, the peer-to-peer mechanism which expresses the influence of the 

network of interactions on diffusion dynamics. Due the intertwining between heterogeneity and the 

network structure, not all the susceptible firms become adopters but only a certain fraction 

according to: 
γ

ρ

ρ
−









−=

c

k

k NN 10       [3] 

 

Eq. 3 defines the dynamics of the propagation process in terms of the cumulative number of 

adopters kN
8
 (i.e. the number of infected firms) at each iteration k , as a function of the initial 

                                                                                                                                                                  
6
 From this point of view it is clear how simplifying the hypothesis of direct transfer through contact is. Social learning 

models relax this assumption and offer, among other things, the analysis of the mechanisms underlying information 

processing which could be included in the present framework and lead to interesting results and implications. 
7
 In Equation 2 the learning curve cost reduction is represented by its classic functional form. However recent studies 

have proven that it may not always be the appropriate one (Pan and Kohler, 2007). 
8
 We measure diffusion by the extensive margin of adoption: each decision to adopt corresponds to one more adopter 

and it adds up to the cumulative number of adopters. However this implies that the environmental impact of eco-

innovations diffusion cannot be analyzed. Think for instance, like in the present case, to the spread of a new cleaner 

production process. The extent of pollution reduction does not only depend on whether a firm has adopted the 



exogenous number of adopters 0N  ( 00 >N ), the susceptibility coefficient γ  (which expresses the 

architecture of the network) and the density of potential adopters ρ  (i.e. the number of susceptible 

firms in the business network). The mean size of the percolation cluster (i.e. the collection of 

adopters) diverges when the density of potential adopters kρ  approaches the critical density cρ . At 

0,0 NN kk ==ρ . Through the critical density cρ  and the susceptibility critical exponent 0≥γ , 

Eq. 3 shows how the size of the diffusion cluster depends on the network of interactions
9
. 

The intertwining between heterogeneity, endogenous costs reductions and the network of 

interactions through which information flows give raise to an autocatalytic feedback loop. Given the 

initial cost of adoption 0c  and the initial exogenous number of adopters 0N , the cost c  decreases 

according to Eq. 2. An increase in the density of potential adopters ρ  follows (Eq. 1), which in turn 

increases the number of cumulative adopters N  (Eq. 3). The further decrease of the cost of 

adoption leads to a further increase in the density of potential adopters and, as a consequence, to a 

further raise in the cumulative number of adopters and so on. Formally, for 0>k , the autocatalytic 

feedback loop can be written as: 

[ ] ....1 2210210111001 →=→=→−=→=→= −−−−− µαγµα ρρρρ cNccNNcNcc c  

 

The iterative process starts at 1=k . At 0=k , 0cck = , 0=kρ  and 0NN k = . 

For certain values of the parameters γα ,,0c  and µ  the process initiated by the 0N  seeds may fall 

in very diverse regions of the system dynamics. However, due to the symmetries of the problem, 

( ) 







′

′
=′=′=

′ µ
µ

α
αµα

µ
µµ ,,,,,, 00000 ccNNcNN  

( )





















 ′
=′′

′
= µαµα

α

,,,,,, 0

0

0

00

0

0

00 c
N

N
cNN

N

N
cNN  

 

only two of the four parameters α,, 00 cN  and µ  are independent (while the critical exponent 

11.2=γ  as shown by Cantono and Solomon, 2010): the effects of varying µ  and 0N  can be 

related to the effects of varying 0c  and α (in the remainder of the paper µ  and 0N  are maintained 

fixed - 40;25 0 == Nµ  - and mainly 0c  and α  will vary). 

Finally, the problem: given 0, Nµ , for which combination of the initial cost of adoption 0c  and the 

learning coefficient α  will the new technology conquer the entire lattice. In particular, which 

combinations α,,0 cc  separate between regimes of macroscopic and microscopic diffusion? 

The results show that: 

                                                                                                                                                                  
technology, but also on how intensively that technology is used by the same firm, i.e. the share of pollution reduction 

per unit of output multiplied by cumulative output. The former is the extensive margin of adoption while the latter is the 

intensive margin of adoption. Any further research in this direction is likely to produce useful results 
9
 The goodness of fit of Eq. 3, which becomes an approximation of the clusters size dynamics when 10 >N , has been 

checked by confronting the theoretical predictions with the Monte Carlo simulations and the results of the comparison 

are reassuring: the scaling hypothesis is guaranteed (Cantono and Solomon, 2010). 



- for values ( )γαµ ,,, 0,0 Ncc co <  the new technology propagates frictionless until overall 

diffusion is reached; 

- for values ( )γαµ ,,,~ 0,0 Ncc co  the process hangs up at a finite N , ready to take-off at the 

first minimum external boost; 

- for values ( )γαµ ,,, 0,0 Ncc co > , i.e. high up-front costs, the process rests dormant in a 

stagnation region, attracted towards a lower bound propagation level, unless exogenously 

driven until an upper bound propagation level after which it would diverge to overall 

diffusion. 

 

III. THE AUTOCATALYTIC FEEDBACK LOOP AND ITS MAIN DYNAMICS 

 

Let us investigate formally the dynamics of the model. We were left with the iterative dynamic 

process of the form: 

 

 γ

ρ

ρ
−









−=

c

k

k NN 10

 α−

−= 10 kk Ncc  µρ −= kk c

 

Figure 1: the autocatalytic feedback loop 

 

By substituting kc  (Eq. 2) into kρ  (Eq. 1) and further substituting into kN  (Eq. 3) the following 

equation can be obtained: 
γ

αµ

µ −

−






















−= 1

0

0 1 k

c

k N
c

c
NN       [4] 

 

The outcome of the iterative process (Eq. 1, 2, 3) is found by looking for the fixed points which 

fulfil the stationary condition 1−= kk NN  in Eq. 4: 

γ

αµ

µ −























−= N

c

c
NN c

0

0 1       [5] 

 

A graphical solution reveals its main dynamics (Figure 2). The autocatalytic feedback loop 

triggered by the iterative process affects the percolation phase transition rendering the system 

dynamics discontinuous, path-dependent and irreversible. Given the set of parameters γµ ,, 0N  and 

α , depending on the initial cost of adoption 0c  the process may fall in very different states. There 

exists a critical value of the initial cost cc ,0  for which Eq. 5 has a unique tangent solution (Fig. 2/a), 

the repulsive fixed point uphangN − . High up-front costs of adoption seem enough to dominate 

learning curve cost reductions and the process hangs up at a negligible level of diffusion but the 



stability of the system is an illusion for the slightest disturbance could trigger the process to overall 

propagation. For any ccc ,00 <  the new technology conquers the entire system, Eq. 5 does not have 

real solutions (Fig. 2/b). If ccc ,00 >  then Eq. 5 has two solutions (Fig. 2/c): the attractive fixed point 

stopN  and the repulsive fixed point returnnoN . The process initiated by the 0N  seeds is destined to 

stop very soon at stopN . Only if pushed beyond returnnoN  will diffusion be self-sustaining. 
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Figure 2: Graphical solution of Eq. 4 for 52=µ , 400 =N , 11.2=γ , 3.0=α  and 23.1=cc ; ccc ,00 ~  in 

1/a, ccc ,00 <  in 1/b and ccc ,00 >  in 1/c 

 

By looking for the critical values of 0c , i.e. cc ,0  which separates between negligible and 

macroscopic diffusion the first order phase transition in the α,0c  plane emerges. As Figure 3 

describes, all the combinations α,0c  falling in the area subtended by the curve are those for which 

Eq. 5 does not have real solutions. The points on the curve represent all the situations where there is 

the tangent fixed point solution. Microscopic propagation is the result for any combination of α,0c  

falling above the curve. The latter case is the case in which Eq. 5 displays two fixed points 

solutions. 

In the absence of learning economies (i.e. 0=α  in Figure 3) diffusion takes off only if ccc <0 , as 

it would be the case in the traditional physics inspired percolation settings. As opposed to the usual 

percolation phase transition ccc =0 , the phase transition at the new critical value cc ,0  is 

discontinuous, and cc cc >,0 . In the presence of endogenous cost reductions the autocatalytic 

feedback look may drive the process to overall propagation even if ccc ≥0 , it thus impacts on 

diffusion dynamics by shifting the percolation critical threshold forward. As argued by the 

literature, learning curve cost reductions mitigate the impact of high up-front costs and may help the 

new technology to overcome the early obstacles to its propagation (Isoard and Soria, 2001; 



Soderholm and Klaassen, 2007). However there are cases in which endogenous costs reductions are 

insufficient. 
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Figure 3: phase transition in the α,0c  plane ( 52=µ , 400 =N , 11.2=γ ) 

 

Let us illustrate the regions of the system dynamics as a function of N  and 0c  (Fig. 4). The 

particular combination of µα ,  and γ  which has been chosen allows for a simple analytical solution 

of Eq. 5 (for 1=γµα , αµ
0

1

,0 4 Ncc cc =  and 02 NN uphang

γ=−  as shown by the Appendix). Figure 4 

shows that for values of ccc ,00 <  the system falls under the regime of macroscopic propagation. 

The process initiated by the 0N  seeds conquers undisturbed the entire market, i.e. diffusion is self-

sustaining. At αµ
0

1

,00 4 Nccc cc ==  suddenly a real solution appears and the process hangs up at 

02 NN uphang

γ=− . For every value of ccc ,00 >  the process boils down to negligible diffusion 

attracted by the lower bound solution frontier stopN . Because of the interaction between high up 

front costs, potential adopters heterogeneity and the network structure not all the firms potentially 

willing to adopt are reached by the diffusion wave instantaneously but only an insignificant 

fraction. Entrapped by isolated clusters of adopters, the diffusion process cannot benefit from 

learning curve cost reductions. There is no way of reaching self-sustained diffusion other than that 

of crossing the stagnation region supported by external intervention. The next section shows how. 
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Figure 4: the regions of the system dynamics as a function of N  and 0c ; 400 =N , 11.2,19.0 == γα  and 

5.2=µ  

 

IV. THE OPTIMAL DYNAMIC PATH OF SUBSIDY 

 

There are several instruments which, in the model environment, would allow a new technology 

entrapped by isolated communities of adopters to diffuse. One possible policy response could be 

that of acting either on the learning coefficient or on the initial cost of adoption. That may be 

accomplished by policy interventions in favour of R&D. Another possibility is that of favouring the 

spread of information, for example by totally sustaining 00 >>N  initial adopters. The present work 

is limited to the case of adoption subsidies and it aims to compute the optimal dynamic schedule 

which guarantees self-sustained propagation. The analysis is not extended to welfare implications 

which is left to future work. Indeed it is known that a subsidy policy in a monopoly regime may not 

always yield welfare gains (Stoneman and David, 1986). Here it is just assumed that the policy 

passes that test. 

Many patterns of subsidies are possible, but only one can be implemented with the minimum effort. 

Let us define the optimal (necessary and sufficient) dynamic path of subsidies S  in the case of 

high-up front cost, i.e. ( )αµ ,, 0,0 Ncc co > . 

In order to be of size kN , the percolation cluster requires a level of the cost: 

( )[ ] µ
γ

1
1

01
−

−
−= NNcc kck      [6] 

 

Eq. 6 is obtained by substituting kρ  (Eq. 1) into kN (Eq. 3) and further solving for kc . 

The most effective and minimal intervention kS  which fills the gap between the cost necessary to 

reach kN  adopters, given by Eq. 6, and the cost insured by 1−kN  adopters, provided by Eq. 2, is: 
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Figure 5 illustrates c  as a function of N  according to both Eq. 2 and Eq. 6. If there are not points 

of intersection between Eq. 2 and Eq. 6 the system is back to the situation of macroscopic diffusion: 

( )αµ ,, 0,00 Ncc c<  and public intervention is not necessary ( 0<kS  for each k ): the process 

initiated by the 0N  seeds never stops. The tangent solution illustrates the case in which propagation 

hangs up at a small finite uphangNN −= , and ( )αµ ,,~ 0,0 Ncc co . Any positive level of subsidies 

given even only to one potential adopter would be enough to overcome the single repulsive fixed 

point solution. Finally if the two curves intersect each other twice, ( )αµ ,, 0,0 Ncc co > , then 

subsidies are needed in the interval between the intersection points, i.e. between stopN  and returnnoN , 

or diffusion will never take-off. 
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Figure 5: c  as a function of N : 400 =N , 11.2,19.0 == γα  and 5.2=µ . Eq. 6 is represented by the 

black curve; Eq. 3 is illustrated both by the dotted red curve (for ( )αµ ,,~ 0,0 Ncc co ) and by the red curve (for 

( )αµ ,, 0,0 Ncc co > ). 

 

Let us take the latter case, ( )αµ ,, 0,0 Ncc co > . From Figure 5 Eq. 7 is expected to display initially 

negative values (Eq. 6 is above Eq. 2), then positive values from stopN  to returnnoN  and finally 

negative values again. In other words, the process described begins at 0N  and it continuous 

undisturbed until stopN . If not triggered the process would simply lie there and the technology 

would never conquer the entire market. Thus kS  has to be set such as to fill the gap between Eq. 2 

and Eq. 6 for each N , which in this case, coincide with nk ,...,2,1= . Figure 6 below unveils the 

optimal dynamic path of subsidies kS . The results support the argument that subsidies are needed at 

the outset of innovation. However, in the face of high-up front costs a new technology will never 



conquer the entire market if not triggered until the critical mass is reached, even if cost reductions 

are attainable in the future: subsidies have to last at least until returnnoN  or any effort would be 

useless. The phasing-out stage is as important as the initial phase of the path: not only has the policy 

to sustain the process until returnnoN  but it also has to give at least kS  at each iteration k . Any level 

of kS  lying below the curve in Figure 6 would be insufficient and the process would immediately 

converge again to the attractive fixed point stopN . 
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Figure 6: the dynamic optimal path of subsidies. 400 =N , 11.2,19.0 == γα  and 5.2=µ  

 

In the next section the predictions of the model are compared with the Monte Carlo simulations in 

order to answer to the following questions. Do the main mechanisms of the model lead to the same 

conclusions and interpretations? What if Eq. 3 would not reproduce the peer-to-peer mechanism 

correctly? What about the reliability of the phase transition curve depicted by Figure 3? Finally is 

the optimal path of subsidy attainable? 

 

V. THE SIMULATION MODEL 

 

What looks like a smooth continuous function (Eq. 3) is infact a discrete process. The discrepancies 

between the former and the latter, though not so much statistically significant (see Cantono and 

Solomon, 2010), are actually responsible for the failure or the success of a technology, as well as 

for the effectiveness of a subsidy policy. Let us show how that works by describing the simulation 

version of the model. 

M  firms indexed by Mi ,.....,3,2,1= 10
 are randomly spread at each node of a bi-dimensional 

regular lattice (i.e. Ising network) with periodic boundary conditions. Each firm i  is connected to 

its business partners j . The links ( )ji,  forms the network geometry which characterizes the peer-

                                                 
10

In the model M  is considered “large enough” for all the relevant ranges of the parameters, in particular 

10000=M . In the present framework the effect of finite size M  will not be discussed. 



to-peer mechanism. To each firm i  is assigned a gross benefit ib drawn from a Pareto probability 

distribution: 

( ) µ−
=>Ρ kki ccb  for 1>kc  and ( ) 1=>Ρ ki cb  for 1<kc     

 

At each simulation time step k , each firm adopts if and only if 1) one of its business partner has 

already adopted the technology and 2) its gross benefit is higher than the adoption cost of the 

technology, ki cb > . As assumed in the mathematical model, adoption is a best response strategy if 

ki cb >  conditional on receiving a signal from at least a business partner who has already adopted. 

The cost of adoption dynamics follow Eq. 2. 

Once the initial cost of adoption 0c  and the learning coefficient α  are set, an initial number of 

adopters 0N  is chosen regardless their gross benefits and the simulation model runs according to 

two type of algorithms: 

A. mesoscopic algorithm: at each simulation time step k , rules 1 and 2 follow one another 

until the process stops, then the cost of adoption is updated according to Eq. 2. The two 

procedures are repeated continuously until no more potential adopters join the diffusion 

cluster. Finally the data are recorded; 

B. invasion percolation algorithm (Wilkinson and Willensen, 1983): firms neighbouring the 

percolation clusters are collected at each unitary increase in N . The one characterized by 

the highest gross benefit is selected and its status is switched to that of adopters even if 

ki cb < ; the procedures are continuously implemented until MN = . 

As Figure 7 illustrates, by running the invasion percolation algorithm a disorderly series of points 

appears (black points). Only a limited number of components are key element to the system 

dynamics (yellow points): those responsible for the destiny of the technology are the points (firms) 

whose ib  are lower than any of the previous sbi  appeared in the noisy series, i.e. the lower 

envelope (Cantono and Solomon, 2010). These points seem to lie perfectly on the curve (red curve 

in the figure) which describes the required level of the cost of adoption c  in order for the diffusion 

cluster to be of size N  (Eq. 6 fitted to the given single configuration, i.e. 16.2=γ ). Graphically the 

similarity between the cluster size dynamics and the lower envelope looks striking. But a careful 

glance reveals unevenly distributed holes along the curve. The holes are the isolated clusters of 

potential adopters met by the propagation process and connected by the firms on the lower 

envelope. The simulation model unveils cluster size dynamics. The sparse character of the lower 

envelope is the result of clusters fusion. Diffusion occurs along sudden explosions, irregular in 

strength, connected by a limited number of critical individuals. The reason why, given the set of 

parameters, the diffusion wave cannot instantaneously reach every potential adopters is thus the 

presence of non-mixing communities. Non-connected populations of potential adopters emerge out 

of the intertwining between the network of interactions and firms’ heterogeneity. An example of the 

effect of isolated clusters of potential adopters is shown by the small quadrant in Figure 7. The 

yellow point on the left may obstruct the diffusion process: the island of firms which follow 

thereafter (black points in the quadrant) may not be able to consider the technology. If the cost of 



the new technology is not lower than its gross benefit by the time the wave of diffusion reaches it 

then the firm (represented by the yellow point in the quadrant) will not join the cluster of adopters 

and the process will stop. 
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Figure 7: The lower envelope for a given configuration of gross benefits ( 40;16.2;25 0 === Nγµ ) 

 

Both the main mechanisms underlying the system dynamics and the predictions of the mathematical 

model have been verified by running the mesoscopic algorithm and i) there exists a discontinuous 

first order phase transition in cc ,0 ; ii) depending on the initial level of the cost the process may hang 

up at an apparently stable state of negligible diffusion; or it may propagate until overall diffusion is 

reached; or it may stop entrapped by isolated clusters of potential adopters. However the discrete 

character of the lower envelope is the source of the noise in the precision in of those estimations. 

Formally, for individual configurations, there will be situations in which the values of either 

stopuphang NN ,−  or returnnoN  predicted by the mathematical model fall on one of the holes. In the 

simulation model the N  corresponding to the closest previous point on the lower envelope will be 

recorded. Diverse efficient methods for reducing the noise have been explored and the predictions 

of the model have been validated (Cantono and Solomon, 2010). Yet it would be difficult to follow 

them blindly, for even if the noise can be reduced in a model it cannot be erased from reality. 

Let us illustrate why this is so by taking one case of unsuccessful diffusion and by looking at the 

effect of the noise on the reliability of the optimal dynamic schedule of subsidies. Figure 8 shows 

the optimal path of subsidy according to Eq. 7 and the necessary minimum path of subsidy required 

for a given single configuration of gross benefits as it emerges from the simulation model. 
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Figure 8: the red curve is the optimal dynamic subsidy schedule S  as a function of N , according to Eq. 7; the 

yellow points represent the positive difference between the cost of adoption (Eq. 2) (vertical axis) and the level of 

the gross benefit for each corresponding N  on the lower envelope (horizontal axis); the configuration of gross 

benefits is analogue to the one illustrated by Fig. 7; 400 =N , 16.2,25.0 == γα , 5.2=µ  and 

6,00 => ccc  

 

From Figure 8 it can be inferred that blindly following the dynamic path of subsidy advised by Eq. 

7 will not help to support the diffusion of the new technology for the chosen system configuration. 

While the main mechanisms underlying the system dynamics are correctly reproduced and the main 

results holds (for ( )αµ ,, 0,0 Ncc co >  the system stops either at a finite small N  - stopN , or it reaches 

overall propagation if forced until a critical N  - returnnoN ; the necessary path of subsidies follows a 

similar path than the one predicted), the accuracy of the predictions is less comforting. Not only 

would the simulation model suggest to start the policy before (i.e. stopN  comes sooner than 

predicted) but it would also suggest a stronger intervention in the early stages of diffusion. 

Arbitrarily setting the level of subsidy will likely trigger to a waste of resources. However, even if 

rigorously computed, any optimal dynamic schedule of subsidy will face the strength of uniqueness 

at any encounter with potential adopters’ heterogeneity. In a limited number of cases, the specific 

characterization of potential adopters will be fatal. If not supported sufficiently, the wave of 

diffusion will neither rise nor fall on the coasts of the isolated clusters of potential adopters. 

An overall synthesis of the main findings is given in the next and concluding section. 

 

VI. CONCLUSIONS 

 

To resume. Although boosted by future costs reductions, new technologies characterized by high 

up-front costs, such as many environmental technologies, may not be able to overcome the barriers 

to overall diffusion. Non-mixing communities may impede the free flow of information from past to 

future adopters often necessary for the adoption choice to take place. 

The present model combines in a unique framework a learning curve model of dynamic cost 

reductions, a discrete choice model of heterogeneous technology adoption and a contagion model of 



technology diffusion. By focusing on the pattern of diffusion it uncovers its underlying dynamics. 

Isolated clusters of potential adopters emerge out of the interaction between heterogeneity and the 

network structure. New technologies which could potentially conquer the market may not be able to 

reach the ideal equilibrium because of limited communication within the system. 

Hampered by such an obstacle, diffusion cannot be enhanced by potential future cost reductions. 

The intertwining between endogenous cost reductions, heterogeneity and the network of 

interactions through which information is transmitted gives rise to an autocatalytic feedback loop 

which renders the system dynamics path dependent and irreversible. Indeed there exists a 

discontinuous phase transition between localized and generalized propagation regimes. Under given 

conditions the propagation process may either be self-sustaining and conquer the entire market or it 

may stop at an insignificant diffusion level because entrapped by isolated communities of adopters. 

In the latter case the system ends up either at an apparently stable state, ready to be triggered to 

overall diffusion by the slightest disturbance, or facing a stagnation region defined by diverging 

frontiers, the lower attractive while the latter repulsive. 

When held back by the attractive lower equilibrium only exogenous forces can spur the process to 

self-sustaining diffusion by accompanying it at least until the critical mass of adopters is reached. 

The present work defines the optimal dynamic schedule of adoption subsidy which insures overall 

propagation. The results support the argument that subsidies are needed at the outset of innovation 

however the phasing-out stage is as crucial. Subsidies should follow an initially increasing path and 

should decrease gently. Bu they should last at least until the repulsive upper equilibrium or any 

effort will be useless. 

The reliability of the results from the mathematical model have been checked through the 

comparison with the Monte Carlo simulations. While on the one hand it emerges that the aggregate 

properties of the system (such as stopuphangc NNc ,,0 −  and returnnoN ) are independent on the individual 

configuration, on the other hand only few firms are actually responsible for the fate of the 

technology (i.e. those on the lower envelope). The simulation version unveils the destabilizing 

forces acting at the individual level. Individuality is hardly reproducible, no matter how complex a 

model is: successful diffusion depends on a limited number of components and small changes in the 

individual configuration may be fatal. 

The model presented in this article contributes to the literature by unveiling an emerging feature 

underlying diffusion dynamics, i.e. that of non-mixing populations (Karshenas and Stoneman, 1993; 

Foellmi and Zweimuller, 2006). Secondly, in the spirit of recent important contributions (Jackson 

and Yariv, 2007; Young, 2009), it focuses on the dynamic pattern of diffusion and it characterizes 

the aggregate equilibria of the system. Thirdly it offers the optimal dynamic schedule of subsidies 

which insures self-sustaining diffusion. 

 

 

 

 

 

 



VII. APPENDIX 

 

Eq. 5 can be rewritten as: 
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Let us give the following definitions: 

a
N

c
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
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      [A.3] 

z=γµα        [A.4] 

 

By substituting A.2, A.3, A.4 into Eq. A.1 and rearranging the coefficients, we obtain: 

01 =+−+
aaxx

z       [A.5] 

 

Eq. A.5 can be easily solved for 1=z : 

- there exists a critical stage which separates between regimes with real versus imaginary 

solutions, i.e. 4=a  and 2=x . It follows that 02 NN uphang

γ=−  and αµ
0

1

,0 4 Ncc cc = ; in 

other words, if the pace of learning curve cost reductions, the characterization of 

heterogeneity and the network structure ( µα ,  and γ  respectively) are such that 1=γµα  

and the initial cost of adoption is αµ
0

1

,00 4 Nccc cc == , the new technology does not diffuse 

and hangs up at an insignificant propagation level 02 NNN uphang

γ== − ; 

- for 0>>a  the roots of Eq. A.5 are 1~x  and ax ~ . There exist two solutions the attractive 

0~ NN stop  and the repulsive ( ) α
1

0~ ccN creturnno ; 

- if the radicand is negative then the technology conquers the entire lattice. 
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